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ABSTRACT

Roaming Region for Delaunay Triangulation

by

Romas James Hada

Dr. Laxmi Gewali, Examination Committee Chair

Professor of Computer Science

University of Nevada, Las Vegas

Delaunay graphs have been used in CAD/CAM, sensor network and geographic in-

formation systems. We investigate the reliability properties of nodes in Delaunay

graphs. For measuring the reliability we formulate the concept of roaming-region for

nodes. A node v with large roaming-region r(v) such that v is positioned near the

center of r(v) is identified as a reliable node. We develop algorithms for constructing

roaming-regions and present an implementation of the proposed algorithm in the Java

programming language.
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CHAPTER 1

INTRODUCTION

A network or graph consists of a set of nodes V and a set of edges E. An edge

e ε E connects two nodes in V. Such a network is usually denoted as G(V,E). The

term vertex is also used to indicate node. Similarly, the term link is used to indicate

edge. A class of simple networks used extensively in sensor networks and geographical

information systems is the planar network. It is noted that a network is called planar

if it can be drawn in the plane without intersecting edges. Delaunay triangulation,

relative neighborhood graph and Gabrial graph are examples of widely used planar

network. One of the main reasons for the popularity of planar graphs in application

areas is the fact that the size of a planar graph (number of edges) is not large. In fact,

in a planar graph the number of vertices and the number of edges are linearly related.

Furthermore, the data structure for representing planar graphs is much simpler and

can be updated quickly.

In this thesis we consider the reliability properties of planar network when nodes of

the networks are allowed to change slightly in their neighborhood. Broadly speaking,

a node in a network is called reliable if the connectivity of the network does not change

if the node moves slightly from the initial position. In particular, we investigate the

reliability properties of nodes in a Delaunay triangulation. In Chapter 2, we review

properties and algorithms for Delaunay triangulation and related structures.

In chapter 3, we present the main contribution of the thesis. We first formulate the

notion of roaming-region for a node of Delaunay triangulation. We show that as long

as a node remains within its roaming-region, the underlying Delaunay network does

not change. We present an O(n2) time algorithm for computing the roaming-region

of a node in Delaunay triangulations.

In chapter 4, we consider the implementation of our proposed algorithm for com-

puting roaming-regions for Delaunay nodes. The implementation is done in the Java

programming language with user friendly graphical interfaces. Users can generate De-

1
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launay network interactively by specifying node positions. The implementation also

allows the construction of the Delaunay network for randomly generated nodes. The

interface can be used to identify the roaming-regions for candidate nodes specified by

the user.

Finally, in chapter 5, we discuss the scope and extension of the problem of com-

puting roaming-regions for Delaunay and related networks.

2
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CHAPTER 2

REVIEW OF TRIANGULATED NETWORK AND NODE RELOCATION

In this chapter we present a brief review of algorithms for generating triangulated

networks in two dimensions. We also review algorithms for relocating nodes in sensor

networks.

2.1 Triangulated Network

Triangulation of a set of point sites S = {p0, p1, p2, . . . , pn−1} is the construction of

the maximum number of non-intersecting triangles with vertices in S. Triangulations

could be partial or maximal as illustrated in Figure 2.1. The term triangulation is

(a) point sites S (b) Partial trian-
gulation

(c) Maximal trian-
gulation

Figure 2.1: Illustrating partial and maximal triangulation

generally understood to mean maximal triangulation. The triangulation problem has

been investigated and used in many branches of science and engineering that include

surveying, cartography, robotics, and geographic information systems [8].

After the advent of computational geometry in mid 1970’s, there was a flurry of

research activities dealing with the development of efficient algorithms for triangula-

tion [8]. In this review, we mostly consider the algorithms and data structures for

generating triangulation. It is noted that a given set of point sites can be triangulated

in exponentially many ways [8]. The triangles in a triangulation can be distinguished

as fat, medium and thin or skinny. These notions can be better clarified in terms of

the aspect ratio of a triangle as follows. Consider the smallest rectangle enclosing a

triangle. Let w and h (w <= h) denote the width and height of the smallest enclosing

rectangle. The ratio w/h is called the aspect-ratio of the triangle. These notions are

3
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(a) Thin/Skinny (b) Fat (c) Medium

Figure 2.2: Aspect ratio and quality triangles

illustrated in Figure 2.2.

Most researchers are interested in a triangulation where the number of skinny

triangles is reduced. This is illustrated in Figure 2.3. In Figure 2.3, the triangulation

on the right has reduced number of skinny triangles compared to the one on the

left. A triangulation with fewer number of skinny triangles is called a good quality

triangulation. In Figure 2.2, the leftmost triangle has low aspect ratio and is a thin

triangle. Similarly the middle one is a fat triangle with aspect-ratio close to one.

Figure 2.3: Triangulation with dense and sparse skinny triangles

2.2 Delaunay Triangulation

A triangulation with the most interesting properties is the Delauay triangulation.

A Delaunay Triangulation is the dual of the Voronoi diagram [5, 8]. An interesting

property of Delaunay triangulation is the fact that it maximizes the smallest angle

of triangulation [4]. There is a direct characterization of Delaunay triangulation in

terms of in-circle property, i.e. two points b and c are the end points of a Delaunay

edge if and only if there is a circle through b and c that passes through no other point

sites and contains no sites in its interior. Consequently, all triangles in the Delaunay

triangulation for a given point site will have empty circumscribed circles. That is,

no point sites lie in the interior of any triangle’s circum-circle. It is always unique

4
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as long as no four points in the given point sites are co-circular. If more than three

point-sites are co-circular then there will not be unique Delaunay triangles.

In Figure 2.4, the circle through point b and c contains no other point sites inside

it. Hence, it is a delaunay edge for the given point sites. Similarly for point sites a, b,

c and d as shown on the left of Figure 2.4, the segment connecting point sites c and

a cannot be a delaunay edge as the circle passing through point sites c, d and a is

not an empty circle as it encloses a point sites b inside it. Hence, it is not a delaunay

edge.

As Delaunay triangulation maximizes the smallest angle, it is geometrically nice

and, in general, pleasing to the eye. Delaunay triangulations have a number of in-

teresting properties other than the empty circle property which are briefly described

next.

convex-hull : The exterior face of the Delaunay triangulation is the convex-hull of

the point set.

Closest pair property : The closest pair of point sites are neighbours in the Delau-

nay triangulation. The circle having these two sites as its diameter cannot contain

any other sites, and so is an empty circle.

Figure 2.4: Delaunay edges shown on left and corresponding Delaunay triangulation
of given point sites on right

2.3 3-D convex-hull and Delaunay Triangulations

There is a very nice relationship between Delaunay triangulation and convex-hull

in three dimensions. Consider a set of points in 2-D plane. The image of these

points can be projected on the surface of a 3-D paraboloid as shown in Figure 2.5.

The details of the construction of paraboloid are found in [8]. The convex-hull of

5
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the lifted points on the surface of the paraboloid gives the connectivity relationships

between point sites in 2-D.

Figure 2.5: Projection of paraboloid

Figure 2.6: Computing convex-hull

Figure 2.7: A Delaunay triangulation and its lifting to a paraboloid

The convex-hull of lifted points in 3-D is shown in Figure 2.6. Now, if these edges

in 3-D convex-hull are projected back to 2-D plane, we get the Delaunay triangulation

6
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as shown in Figure 2.7. This remarkable relationship between 3-D convex-hull and

2-D Delaunay triangulation was discovered by Brown [1]. In fact, this relationship

has been generalised between m and m + 1 dimension in Eucledian space.

2.4 Algorithms for Node Relocation

An interesting problem of network design is the reconstruction of the network

when nodes are allowed to change their position. Not much research work has been

reported on the change of network when node position varies. Some recent work

on node relocation have been considered by investigators in sensor network commu-

nity. For example, Coskun [3] has investigated connected cover problem for sensor

networks when some sensor nodes are allowed to change location. Rongratana [6, 7]

has addressed the problem of identifying free-regions of a sensor node so that the

connectivity of network is preserved as long as a node remains within its free-region.

Since the work presented in Chapter 3 is also dealing with the relocation of nodes we

present an overview of the concepts and results reported in [6, 7]; where the relocation

is done for nodes of Unit disk graph.

Unit disk graph is a very useful concept for application in the sensor networks.

Unit disk graph is defined when all nodes have identical transmission range which

is taken without loss of generality as 1. Each sensor node becomes the vertex of

the Unit disk graph. Two nodes v1 and v2 are connected by an edge if the distance

between v1 and v2 is less than or equal to 1. Basically, a Unit disk graph (UDG)

G(V,E) is obtained by connecting all vertices that are within the transmission range

(=1). Figure 2.8 shows an example of UDG with indicated range 1. It is remarked

that UDG becomes very dense if the transmission range is large. Let TD(i) denote

the transmission disk of node vi.

The free-region of a node is computed in terms of in-free region and out-free region

of that node. Consider a sensor-node v1 whose neighbor nodes in the Unit disk graph

are v2, v3 and v4 as shown in Figure 2.9. A node ndj is called an outbound node of node

ndi if (i) ndj lies outside the transmission disk TD(i) of ndi and (ii) the transmission

7
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Figure 2.8: Illustrating Unit disk graph

disks TD(i) and TD(j) intersect. The disks of out-bound nodes of v1 are drawn dashed

in the Figure 2.9. The region of TD(i) that is not intersecting with the transmission

(a) The transmission disk
(drawn dashed) of outbound
nodes of vi

(b) Formation of outfree
region

Figure 2.9: Illustrating an out-free-region of a node

disks of outbound nodes of v1 gives the out-free region of v1 as shown in Figure 2.9

b. Similarly, the notion of in-free region is considered. In-bound nodes of v1 are

the nodes that lies within its transmission disk. The intersection of the transmission

disk of inbound nodes give the in-free region as shown in Figure 2.10. The details

are reported in [6, 7]. The intersection of in-free region and out-free region precisely

gives the free region of node v1. As long as node v1 remains within its free-region

the Unit disk graph doesn’t change. Free-region of a sensor node can be computed

in O(k2) time where k is the number of out-bound and in-bound nodes of v1 [6, 7]. It

is interesting to note that the problem of computing the free region of a sensor node

8
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(a) The transmission
disk (drawn dashed) of
inbound nodes of vi

(b) Formation of in-free-
region of vi

Figure 2.10: Illustrating an in-free-region of a node

has lower bound Ω(klogk) which is proved in [6, 7] by reducing the sorting problem

to the free-region computation problem. Figure 2.11 illustrates a free-region of node

v1.

Figure 2.11: Illustrating a free-region of a node

2.5 Constrained Delaunay Triangulation

A well known variation of Delaunay triangulation is the Constrained Delaunay tri-

angulation (CDT). In the standard Delaunay triangulation, the input consists of only

point sites. In the Constrained Delaunay triangulation, the input consists of (i) a set

of point sites p0, p1, p2, ..., pn−1and (ii) a set of line segments constraints l0, l2, ..., lm−1.

The set of line segments could be the edges of a polygon. The constrained Delaunay

triangulation is defined again in terms of the empty circle test with a little “twist”.

The edges of a CDT are the edges of the given constraint line segments and “other

9
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edges”. While performing the empty circle test for CDT, the portion of the circle

chopped by constraint line segments is ignored. Let us clarify it with an example as

shown in Figure 2.12. In the standard DT, v1 and v3 cannot be connected to make

Figure 2.12: Illustrating constrained Delaunay triangulation

an edge of DT because no empty circle can be drawn with v1 and v3 on its boundary.

In CDT the portion of the circle lying past the constraint lines v1v2 and v2v3 are

ignored. So, v1 is connected to v3. When we make other connections we get CDT as

shown in Figure 2.12.

Algorithms for constructiong CDT are reported in [2]. The algorithm reported

in [2] constructs CDT in O(n logn) time by using divide and conquer algorithm. It

has been remarked by several authors that CDTs have application in constructing

trees. By using the algorithm given in [2], constrained minimum spanning tree can

be computed in O(n logn) time. Another interesting application of CDT is in the

motion planning of robots in the presence of obstacles.

Another version of constrained Delaunay triangulation is reported in [9], where

new vertices are introduced to refine the triangulation. The input is a planar straight

line graph G’ containing a set of free vertices W and set of line segments L. The total

vertices are the vertices V’ in G’ and the vertices in W. Initially a triangulation is

done for vertices in V’∪W. If the initial Delaunay triangulation edges intersect the

edges of planar graph G’ then the intersecting edges of G’ are split at the middle to

introduce new vertices. After the introduction of such new vertices other new vertices

are introduced based on the following two conditions: (i) Encroachment condition (ii)

10
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Skinny condition.

Encroachment condition: A free vertex v encroaches an edge s1 of PSLG if di-

ametral circle of s1 contain vertex v. In Figure 2.13a, segment v1 and v2 is encroached

by vertex v8. Each encroached segments are split at the middle by introducing a new

vertex.

Skinny Condition: If a triangle has very small angle say α then such triangles

are refined by introducing new vertices. Suppose triangle t1 = (v3v4v5) is a skinny

triangle. Then consider a circumscribing circle c1 of t1. The center of t1 is inserted as

new vertex and re-triangulation is performed for the new set of vertices. An example

of such refinement is shown in Figure 2.13.

This process of triangulation refinement is continued until certain fraction of new

vertices are introduced or some other criteria is reached. Details are found in [9].

(a)The edge v1v2 intersecting with
a delaunay edge and triangles
v3v4v5 and v8v9v10 with one of the
internal angles less than specified
minimum angle

(b) Adding new vertices v6, v7 and
v11 to given set of points and re-
triangulating them to give a re-
fined delaunay triangulation

Figure 2.13: Illustrating Delaunay refinement algorithm

11
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CHAPTER 3

ROAMING REGION FOR DELAUNAY NODES

3.1 Problem Formulation

Consider a set of nine nodes “S” as shown in Figure 3.1a. The Delaunay triangu-

lation of these nodes is shown in Figure 3.1b. If we move a node slightly then it is

(a) a set of nine nodes (b) Delaunay triangulation

Figure 3.1: Illustrating Delaunay triangulation

very likely that the Delaunay triangulation of “S” will not change. On the other hand

if we continue to move a point significantly further from its initial position then the

resulting Delaunay triangulation changes. This change of Delaunay triangulation is

shown in Figure 3.2. In Figure 3.2, initially node v0 is connected directly to v1, v2, v3

and v4. When v0 is moved to new position as shown in the figure, it will be connected

to one more node which is v5. This observation shows that it would be interesting

Figure 3.2: Illustrating the change of triangulation by node movement

to deteremine the connected region for a node such that the Delaunay triangulation

12
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remains the same no matter where the node is placed in the region. To formulate this

problem formally we extend the free-region concept introduced in [6] for unit disk

graph.

Definition 3.1 Consider the Delaunay triangulation of a set “S” of points in the

plane. The roaming-region of a node vi is the maximal region Rm(i) in the proximity

of vi such that the Delaunay triangulation does not change when vi is moved to any

point within Rm(i). An example of a roaming region is shown in Figure 3.3.

Figure 3.3: Illustrating roaming-region

3.2 Node Classification

To develop an algortihm for constructing roaming region for nodes it is necessary

to distinguish them into several classes. Nodes that are on the boundary of the convex-

hull of nodes are called external nodes and those that are inside the convex-hull are the

internal nodes. The internal nodes can be further distinguished as shallow-internal

and deep-internal.

Definition 3.2 Consider the Delaunay Triangulation DT of given nodes. An inter-

nal node vi is called deep-internal if all neighbors of vi are internal nodes. In Figure

3.4, node v0 is a deep-internal. In fact node v0 is the only deep-internal node in the

triangulation of Figure 3.4.
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Definition 3.3 An internal node vi is called shallow-internal if some neighbor of vi

is an external node. In Figure 3.4, four nodes v1, v2, v3, and v4 are shallow-internal

nodes.

Remark 3.1 It is remarked that the set of nodes in a Delaunay triangulation T can

be viewed as the union of three disjoint sets: (i) external nodes, (ii) deep-internal

nodes and (iii) shallow-internal nodes.

Figure 3.4: Distinguishing node types

3.3 Roaming Region for Deep-Internal Nodes

Before developing methods for computing roaming regions we recall one of the key

properties of Delaunay triangulation which states that the circum-circle of any triangle

of a Delaunay Triangulation is empty, i.e. the circum-circle does not contain any

other node of the triangulation. This property is called “empty-circle property”. Our

method of computing roaming region of a node is based on the use of set intersection

and set differences of circum-circles of carefully selected triangles (both Delaunay and

non-Delaunay) in the proximity of the candidate node. For this purpose we start with

the characterization of radial and lateral triangles for a given node vi as follows.

Definition 3.4 Consider a candidate Delaunay node vi. Let t1, t2, t3, ...tk be the tri-

angles incident on vi. If the degree of vi is k then there are k incident triangles. The

triangles sharing the sides of incident triangles opposite to vi are the radial triangles

of vi. In Figure 3.5, radial triangles for node vi are shown shaded grey.
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Figure 3.5: Illustrating radial triangles for deep internal node vi

An inspection of the radial triangles of boundary and internal nodes of Delaunay

triangulations shows that some nodes have radial triangles for all incident triangles

while other nodes do not have radial triangles for all of them. This leads to the

following remark.

Remark 3.2 For a deep-internal node vi there will be radial triangles for each inci-

dent triangle of vi.

The notion of lateral triangles is captured by considering consecutive incident triangles

titi+1 for a candidate node vi. Lateral triangles as conceptualized below are not

Delaunay triangles. Figure 3.6 shows two of the lateral triangles for a Delaunay node

vi.

Definition 3.5 Let t1, t2, ...tk be the triangles incident on node vi such that they

are ordered angularly around vi. A pair of consecutive incident triangles titi+1 form

a quadrilateral vivpvqvr. The non-Delaunay triangle vpvqvr is a lateral triangle for

vertex vi. In Figure 3.6, only two out of six possible lateral triangles are shown.

Radial Roaming Region: LetR1, R2, R3, ...Rn be radial disks of v0. Let v1, v2, v3, ...vm

be the neighboring nodes of v0. Let Dmax be the convex-hull area of the point sites
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Figure 3.6: Illustrating lateral triangles for deep internal node vi

including v0 and neighbor nodes v1, v2, v3, ...vm. Then, the radial roaming region of

vi is:

Radial Roaming Region = RR(i) = Dmax - R1 −R2.....−Rn (i)

In Figure 3.7, radial circum-circles R1, R2, R3 and R4 are drawn with respect

to delaunay triangles D1, D2, D3 and D4 respectively. In this scenario, Delaunay

triangles D1, D2, D3 and D4 are radial triangles of v0.

To compute a free roaming region for a node vi, considering the radial circum-

circles is not enough. So, we also need to consider another concept of “lateral circum-

circles”. Radial circum-circles and lateral circum-circles are shown in Figure 3.7 and

Figure 3.8 (dotted circles) respectively.

Figure 3.7: Illustrating radial roaming region for v0
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Lateral Roaming Region: Let L1, L2, L3, ...Lk be the lateral disks of vi. Then

lateral roaming region LR(i) for node vi is given by

Lateral Roaming Region = LR(i) = ∩(L1, L2, L3, .....Lk) (ii)

The intersection of radial roaming region RR(i) and lateral roaming region LR(i)

precisely gives the roaming region R(i) for node vi as follows.

R(i) = ∩(LR(i),RR(i)) (iii)

Figure 3.8: Illustrating radial roaming region for v0

Figure 3.9: Illustrating formation of roaming region R(0)

The formation of radial roaming region RR(0) for node v0 is elaborated in Figure

3.7. The radial disks are drawn with circles and the convex-hull region chopped by

radial disks are shown on the right side of the figure. Similarly, the formation of

lateral roaming region LR(0) for node v0 is elaborated in Figure 3.8. The lateral

disks are drawn with dotted circles and their intersection LR(0) is shown on the right
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side of the figure. The overlay of lateral roaming region LR(0) and radial roaming

region RR(0) is shown in Figure 3.9. The intersection of LR(0) and RR(0) gives the

roaming region R(0) as shown on the right side of the figure.

The algorithm for computing the roaming regions for internal nodes is sketched

below:

Roaming Region Algorithm for Internal Nodes

Input: (i) Delaunay Triangulation DT

(ii) Interior node vi

Output: Roaming region R(i) for vi

Algorithm 1 Roaming Region for Internal Node

1: a. Determine all the neighboring nodes v1, v2, ..., vm of vi in DT
b. LetDmax be the convex-hull area of the point sites including vi and neighboring
nodes v1, v2, ..., vm

2: (i) Determine the radial triangles t1, t2, ..., tk for vi
(ii) Compute radial disks R1, R2, ..., Rk corresponding to t1, t2, ..., tk

3: Determine RR(i) = Dmax - R1 - R2 ... -Rk

4: Identify lateral disks L1, L2, ..., Lp for vertex vi
5: Compute LR(i) = ∩(L1, L2, ..., Lp)
6: Determine and output R(i) = ∩(LR(i), RR(i))

Theorem 3.1 The roaming region for deep-internal node vi in a Delaunay triangu-

lation DT can be computed in O(n2) time, where n is the number of nodes in DT.

Proof. We assume that the given Delaunay triangulation is available in a

doubly-connected edge list data structure. Step 1 can be done in O(d(vi)) time by

following the edge list incident on vi, where d(vi) is the degree of node vi. Since the

number of edges in a DT are linearly related to the number of vertices n, d(vi) = n.

Hence, Step 1 and Step 2 take O(n). Once radial triangles around vi are available,

radial disks can be determined in O(n) time. By navigating the doubly connected

edge list data structure, lateral triangles of vi can be determined in O(n) time. Finally,

the intersection of lateral disks and the intersection of LR(i) and RR(i) can be done

in O(n2) time in a straightforward manner. 2
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3.4 Roaming Regions for External Nodes

While roaming regions for internal nodes are always finite and bounded, the cor-

responding roaming regions for external nodes could be both bounded or unbounded.

It is interesting to identify the cases where the roaming region for an external node

is bounded. Consider the case in which the number of convex-hull edges is at least

five as shown in Figure 3.10. Let vi be the candidate external node for which we want

to identify the roaming region. We relabel the nodes as the convex-hull boundary, in

counterclockwise traversal as vi−2, vi−1, vi, vi+1, vi+2.... We further denote the convex-

hull edges as ei−2 = (vi−1, vi−2), ei−1 = (vi, vi−1), ei = (vi, vi+1), ei+1 = (vi+1, vi+2) ...

If the extension of edges ei+1 and ei−2 meet at point qi then the roaming region will

be bounded and inside the union of triangle Ti = (vi−1,qi,vi+1) and the convex-hull

region of the whole point sites.

Figure 3.10: Illustrating bounded roaming region for an external node vi

On the other hand, if the extension of edges ei−2 and ei+1 diverge as shown in

Figure 3.11, then the roaming region could be unbounded for certain distribution of

nodes. In order to come up with the algorithm for capturing roaming regions for

external nodes we need to identify all the cases for which the roaming regions are

finite.

Once such cases are properly identified, it would be straightforward to extend the

algorithm for internal nodes to the nodes on the convex-hull-boundary.
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Figure 3.11: Illustrating unbounded roaming region for an external node vi
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CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

This chapter describes an implementation and study of the reliability of Delaunay

triangulation nodes. The programs were implemented in Java, Version 1.6.

The implementation of determining a roaming regions can be categorized into

three types, i) roaming region for shallow internal nodes ii) roaming region for deep

internal nodes, and iii) roaming region for external nodes. The roaming region area for

a node vi is defined by an intersection of radial and lateral roaming region associated

with given node vi.

There are three stages for determining a roaming region. In the first stage, we

determine the radial region for given node vi, while the second stage deals with the

determination of the lateral roaming region; and the final stage deals with the deter-

mining an intersection of radial and lateral roaming regions resulting in a roaming

region for node vi.

4.1 Interface Description

The main Graphical User Interface(GUI) window is implemented by extending

the JFrame class component in javax.swing which consists of two panels, as shown in

Figure 4.1 The menu bar panel is added to the JFrame on the top, which contains

the File and Tools Menu. All other panels contained within the JFrame object are

constructed by using JPanel class. The whole panel is classified as left and right,

where left panel contains the main display area and the coordinates of mouse cursor

are displayed at the leftmost corner of the panel. Finally, the right panel contains the

buttons which are used to i) display radial, lateral and roaming region, ii) select and

manipulate the vertices and edges of the Delaunay graph, and iii) remove the vertices,

edges and circum-circles from the GUI main panel. The right panel also consists of

text areas for displaying coordinates of the current vertices of the main panel.

A user can initiate a graph by adding vertices and can grow a bigger planar graph
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by adding a sequence of vertices and edges and by splitting edges and by splitting

faces. Edge addition, edge split and face split can be done one at a time.

As the implementation is based on Delaunay triangulation, each time a user adds,

edits or deletes vertices of a graph the Delaunay triangulation is computed and the

resulting Delaunay graph is displayed in the main panel. There are several checkboxes

and buttons to manipulate and generate the graph. The functionality of each menu

item, checkbox and button are breifly described in Table 4.1, Table 4.2 and Table 4.3

respectively.

Table 4.1: Buttons description.

Button Label Functionality
1 Random Sites Used to generate a Delaunay graph at the main panel

with random numbers of nodes
2 Roaming Region Used to display a roaming region for a selected node in

the Delaunay graph
3 Radial Region Used to display a radial region for a selected node in the

Delaunay graph
4 Lateral Region Used to display a lateral region for a selected node in

the Delaunay graph
5 Radial & Lateral Used to display both radial and lateral region for a se-

lected node in the Delaunay graph
6 Quandrangulation Used to quandrangulate a Delaunay graph displayed at

main panel
7 Refresh TxtBox Used to refresh text box at right panel displaying current

co-ordinates of the vertices of the graph
8 Clear Circles Used to remove the radial or lateral or both circum-

circles for a selected node in the Delaunay graph
9 Clear All Used to clear everything at the center panel

Table 4.2: FileMenu description.

Menu item Functionality
1 Read DCEL File Reads a stored file containing a graph in a form of Dou-

bly connected edge list.
2 Save DCEL File Saves a graph in main panel of GUI to a file in a form

of Doubly connected edge list.
3 ExportToXfig Exports and saves a graph in main panel of GUI to *.eps

format.
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Table 4.3: ToolsMenu description.

Menu item Functionality
1 Draw Vertex Draws a vertex of the graph.
2 Edit Vertex Moves the position of selected vertex by dragging mouse.
3 Delete Node Deletes the selected vertex of a graph by updating the

values to the connecting vertices.
4 Add Edge Adds an edge to any vertex vi of a selected face of the

graph.
5 Delete Edge Removes selected edge from the graph.
6 Split Edge Splits the selected edge into two parts by generating a

new vertex to the selected edge.
7 Split Face Splits the face by joining two vertices with an edge.
8 Triangulation Uses Delaunay triangulation for triangulating the graph.

4.2 Program Menu Items

A File tab and a Tools Tab are represented as menu items in the program. The

File menu items enable the user to (i) read and open previously saved graph files, (ii)

save a generated graph to a file and (iii) export the generated graph to the file in .eps

format.

The Tools menu items enable users to (i) create or remove vertices of a graph, ii)

move position of vertices, iii) delete vertices, iv) add or delete edges of a graph, v)

perform triangulation and quandrangulation of a set of vertices, vi) split an edge of a

graph and vii) split a face of a graph. A brief description of the File and Tools items

are provided in Table 4.2 and Table 4.3.

Figure 4.2 and Figure 4.3 illustrate the GUI representation of the File menu and

Tools menu item and selection panel to choose or save the graph G(V,E) respectively.

4.3 Illustrating Roaming Region

To determine a roaming region for a node vi of a Delaunay graph, the radial and

lateral flags should be enabled to instruct the program to perform computations of

both radial as well as lateral regions with respect to a specific node vi. To perform

this action, the checkbox “Roaming Region” in “Tools menu” should be enabled. The

algorithm as described in Chapter 3 is implemented in this program for determining
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Figure 4.1: The initial display of GUI for graph construction

radial as well as lateral roaming regions resulting in a roaming region which is the

intersection of radial and lateral roaming regions. After the user clicks “Roaming

Region” button, the program will display the roaming region for a node in a separate

JFrame as soon as the user clicks near by a node in the main panel of the GUI for

which the roaming region is to be computed and displayed. Figure 4.4 and Figure 4.5

illustrates radial regions for deep internal node and shallow internal node respectively.

Similarly Figure 4.6 and Figure 4.7 illustrates lateral regions for deep and shallow

internal nodes respectively.

The program also provides an option to compute and display a roaming region

for a node in three differnt steps and the steps are i) determining radial roaming region

ii) determining lateral roaming region for a given node and iii) finally, determining a

resulting roaming region for a given node as an area common to both radial as well

as lateral roaming regions.
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Figure 4.2: Display of file menu

4.4 Radial, Lateral and Roaming Region Computation

For an efficient computation during the implementation, all the radial and lateral

circum-circles are converted to their respective polygons.

The program computes the radial region in the form of a polygon which is formed

by a convex-hull region of neighborhood nodes of a target node vi chopped by the

radial circum-circles of the node vi. Similarly, the lateral region is also computed in

the form of a polygon as a result of intersection of two or more lateral circum-circles

which encloses the target node vi.

The roaming region for a target node vi is computed after the computation of the

radial and lateral regions in the form of polygons. Finally, the intersection of radial

and lateral regions results in the roaming region for node vi. Figure 4.8 and Figure

4.9 illustrates roaming regions for deep and shallow internal nodes respectively.

Similarly for an external node, the program identifies one of the two cases as

described in Chapter 3. For a convergence case, the program computes a triangle Ti

as described in Chapter 3 which bounds the roaming region of node vi. The program
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Figure 4.3: Display of tools menu

also checks for possible effects of radial and lateral circum-circles in the roaming region

of vi. Figure 4.10 illustrates an example of bounded roaming region for an external

node.

For any divergence case, except for certain distribution of nodes, the program

displays an unbounded roaming region for node vi. Figure 4.11 illustrates an example

of unbounded roaming region for an external node.
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Figure 4.4: Illustrating a radial region for a deep internal node

Figure 4.5: Illustrating a radial region for a shallow internal node
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Figure 4.6: Illustrating a lateral region for a deep internal node

Figure 4.7: Illustrating a lateral region for a shallow internal node
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Figure 4.8: Illustrating a roaming region for a deep internal node

Figure 4.9: Illustrating a roaming region for a shallow internal node
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Figure 4.10: Illustrating a bounded roaming region for an external node

Figure 4.11: Illustrating an unbounded roaming region for an external node
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CHAPTER 5

CONCLUSION

We reviewed well known algorithms for computing Delaunay triangulation of point

sites in two dimensions. The properties of Delaunay triangulation were examined for

capturing the proximity properties of point sites. We introduced the problem of com-

puting roaming regions for nodes of Delaunay triangulation. To capture the roaming

region of Delaunay nodes we formulated the notions of lateral roaming region and

radial roaming region. We showed that the roaming region is precisely given by the

intersection of radial roaming region and lateral roaming region. This characteriza-

tion led us to the development of an efficient algorithm for computing the roaming

region of a Delaunay node.

We considered the implementation issues of the proposed algorithm and presented

an implementation of the proposed algorithm in Java programming language. The

implementation can display the roaming region for internal nodes.

Several further investigations can be performed by extending the concepts intro-

duced in this thesis. An interesting problem would be to develop an algorithm for

identifying nodes with maximum reliability. Due to time constraint we only imple-

mented the computation of roaming region for internal nodes. It would be interesting

to complete the implementation of roaming region computation for all types of nodes.
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